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In this paper we present the results of a diffuse-interface model for thermocapillary
or Marangoni flow in a Hele-Shaw cell. We use a Galerkin-type spectral element
discretization, based on Gauss–Lobatto quadrature, for numerical implementation of
the governing equations resulting from the diffuse-interface model. The results are
compared to classical results for a linear and circular fixed interface. It is found that
the diffuse-interface solution converges to the classical solution in the sharp-interface
limit. The results are sufficiently accurate if the interfacial thickness is only small
compared to the size of the thermocapillary boundary layer, even if the interfacial
thickness used is much larger than the real interfacial thickness. We also consider
freely movable interfaces with a temperature gradient perpendicular to the interface.
It will be shown that this situation can lead to a destabilizing Marangoni convection.

1. Introduction
An imposed temperature gradient along an interface between immiscible fluids can

induce a flow if the interfacial tension depends on temperature. This phenomenon is
called thermocapillary or Marangoni flow (Davis 1987) and is often encountered in
industrial processing (Edwards, Brenner & Wassan 1991). In industrial processes ther-
mocapillary flow is often accompanied by other phenomena which involve topological
changes in interfaces, such as coalescence, break-up and phase separation (Kuhlmann
1999). In general, interfacial tension depends not only on temperature. It can also
depend strongly on the concentration of a foreign component at the interface. This
situation can lead to spontaneous interfacial activity, called ‘interfacial turbulence’ by
Sternling & Scriven (1959). In some cases the interfacial deformation is so strong that
droplets pinch off (Sherwood & Wei 1957). The goal of the present paper is to find
a physical model and an appropriate numerical implementation which can describe
thermocapillary flow allowing for topological changes.

In the classical approach to multi-component flow, an interface is assumed to
be sharp and appropriate boundary conditions are applied to connect the various
components. Solving the equations of fluid dynamics therefore involves solving a
moving boundary problem. The most ‘natural’ numerical technique in this case is the
tracking method (Hyman 1984; Unverdi & Tryggvason 1992): the discretization is
such that grid points follow the interface. In the case of topological changes, however,
the tracking method is inconvenient, since complicated re-meshing is necessary. To
overcome this problem, Brackbill, Kothe & Zemach (1991) developed a continuum
surface force (CSF) method in which the sharp interface is replaced by an artificial,
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continuous colour function. This colour function is used to determine the position
and the geometry of the interface. Interfacial tension can now be included in the
equation of motion as a body force. A direct application of boundary conditions is
no longer required in this case and a fixed-grid numerical method can be used, which
is convenient in the case of topological changes. The disadvantage of the CSF method
is that the colour function is an arbitrary function, for which the interfacial thickness
does not have a clear physical meaning. It has been shown that numerical results are
sensitive to the choice of this colour function (Lowengrub & Truskinovsky 1998).

In diffuse-interface theories, which go back to the ideas of van der Waals (1979), the
interface also has a non-zero thickness, but it is no longer arbitrary. It is determined by
the molecular force balance at the interface and its value is closely related to the finite
range of molecular interactions (Rowlinson & Widom 1989). Thermodynamically, the
finite interaction range is represented by a non-local effect in the free energy: the
local free energy density depends not only on the local composition, but also on the
composition of the immediate environment (Davis & Scriven 1982). Cahn & Hilliard
(1958) used a Taylor expansion of the free energy density about the homogeneous
system. In this way, the non-local effect is represented by a dependence on local
composition gradients rather than non-local composition. Non-classical expressions
for the chemical potential and the stress tensor can then be derived in differential
form. This allows a direct coupling with the equations of fluid dynamics.

The Cahn–Hilliard approach was originally designed to model spinodal decom-
position (Cahn & Hilliard 1958). The diffuse-interface approach also allows the
inclusion of hydrodynamic coupling: Gurtin, Polignone & Viñals (1996) used the
diffuse-interface approach to study coarsening effects in binary fluids with hydrody-
namic coupling and Anderson, McFadden & Wheeler (2000) used it to investigate
solidification with convection. The diffuse-interface approach has also been used to
study a wide range of hydrodynamic phenomena in which the fluids are thermo-
dynamically in equilibrium: e.g. hydrodynamic instabilities (Lowengrub et al. 1998),
mixing (Chella & Viñals 1996), break-up and moving contact lines (Jacqmin 1996,
2000). A review on recent developments in diffuse-interface modelling is given by
Anderson, McFadden & Wheeler (1998). Antanovskii (1995) studied thermocapillary
flow in the one-dimensional case using the diffuse-interface approach and Jasnow
& Viñals (1996) studied thermocapillary motion of small droplets. Jasnow & Viñals
also derived the sharp-interface expression for interfacial tension (gradients) from
their diffuse-interface capillary term in the momentum equation, but they only show
results for very small droplets. In this paper we focus on the question of whether the
diffuse-interface model can be applied to droplets with radii much larger than the
physical interfacial thickness.

In this paper we study thermocapillary motion in a Hele-Shaw cell. The results
for fixed planar and circular interfaces are directly compared to the analytical results
of Boos & Thess (1997). The dependence on the interfacial thickness is investigated,
considering the sharp-interface limit. Finally, we study thermocapillary instabilities
caused by a temperature gradient perpendicular to the interface. Section 2 is devoted
to the classical, sharp-interface formulation of the problem. In § 3 the diffuse-interface
theory is presented and non-classical expressions for the diffusion flux and the
reversible part of the stress tensor are derived, following the principles of classical
irreversible thermodynamics (de Groot & Mazur 1984). Section 4 is devoted to
the numerical implementation of the governing equations, focusing on the Gauss–
Lobatto spectral element discretization. Results are presented and discussed in §§ 5
and 6. Finally, § 7 contains some conclusions.
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Figure 1. Schematic picture of a Hele-Shaw geometry, where b is the distance between the plates
and L is the structure size of the interface.

2. System definition
Before moving on to the diffuse-interface formulation in the next section, we

first present the classical, sharp-interface version of the problem. We consider two
immiscible, incompressible, non-wetting fluids in a Hele-Shaw cell, which consists of
two closely spaced parallel plates (see figure 1). We assume the two fluids to have
equal density ρ and shear viscosity η. Along both plates, which are assumed to have a
large thermal conductivity, a temperature gradient of the following form is imposed:

T = To + AêT · r, (2.1)

where A is a constant, êT is the unit vector in the direction of the temperature gradient
and r = (x, y) is the spatial coordinate parallel to the plates. Interfacial tension γ
is assumed to be a function of the temperature. For most fluids interfacial tension
decreases with increasing temperature. We assume that the thermal Péclet number is
small, that is PeT = Vb/λ � 1, where V is the thermocapillary velocity scale and
λ is the heat diffusivity of the fluid. In this case the effect of fluid motion on the
temperature field can be neglected, which means that the temperature of the fluid
between the plates is also given by equation (2.1). It can be shown that, even if the
heat diffusivity of the fluid is zero, the deviation from the plate temperature T is still
small as long as the temperature gradient A and the plate spacing b are small (Boos
& Thess 1997).

For small Reynolds numbers Re = Vb/ν, with ν = η/ρ the kinematic viscosity,
fluid flow is governed by the Stokes equations, which are in dimensionless form

∇(3) · v(3) = 0, (2.2)

∇(3) · τ (3) = 0, (2.3)

where ∇(3) = (∂/∂x, ∂/∂y, ∂/∂z), v(3) is the three-dimensional velocity and τ (3) =
−p(3)I + ∇(3)v + ∇(3)vT is the stress tensor, with p(3) the pressure, I the unit dyad. The
kinematic and the stress boundary conditions are

[[v(3)]] = 0, (2.4)

[[τ (3) · n̂]] =
1

Ca
(γn̂∇(3)

s · n̂− ∇(3)
s γ), (2.5)

respectively, where Ca = νV/γo is the capillary number, n̂ is the unit vector normal
to the interface and ∇(3)

s = (I − n̂n̂) · ∇(3) denotes the interface gradient.
For non-wetting fluids in a Hele-Shaw geometry with small plate spacing b the bulk

flow is a Poiseuille flow. In this case the three-dimensional governing equations can
be averaged over the gap. This yields the following set of two-dimensional governing
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equations:

∇ · v = 0, (2.6)

∇p = ∇2v − k2v, (2.7)

where ∇ = (∂/∂x, ∂/∂y), v = (vx, vy) is the velocity averaged over the gap and k =
12L2/b2 is the dimensionless permeability of the cell. Equation (2.7) is the two-
dimensional Stokes equation with an additional Darcy term, which takes into account
the friction force of the flow due to the plates. The Darcy term is normally assumed
to be much larger than the Stokes term. However, this approximation is only valid if
the structure size L is much larger than the plate spacing and if the velocity gradients
parallel to the plates are small compared to velocity gradients perpendicular to the
plates. In case of thermocapillary flow, velocity gradients parallel to the plates can be
large in a small region near the interface.

We assume that Stokes–Darcy equation (2.7) also applies to the interface and
we will not consider any small-scale flow phenomena in the vicinity of the contact
lines. (Jacqmin (1996, 2000) studied fluid motion near a moving contact line, using
the diffuse-interface approach.) The contact lines are assumed to be either fixed or
freely movable. In case of fixed contact lines the normal component of the kinematic
boundary condition is v · n̂ = 0.

The need to apply boundary conditions (2.4) and (2.5) is very inconvenient in
the case of large interfacial deformations or topological changes in the interface.
Furthermore, the physical mechanism controlling topological changes is missing. In
the next section we present the diffuse-interface theory, which includes the physical
mechanism by considering non-local effects in the free energy of the system. All
properties vary continuously across the interface, which allows us to include interfacial
tension as a locally acting body force.

3. Diffuse-interface theory
Diffuse-interface theories are based on non-local effects in the free energy of the

system. As stated in the first section, these non-local effects can be represented by a
dependence on local composition gradients. Therefore we start with the assumption
that the specific internal energy u depends not only on the entropy s and the
mass fraction of one of the components c, but also on the gradient of c. That is
u = u(s, c,∇c). Besides the continuity equation and the modified Stokes equation,
where we use the term ‘modified’ because in the diffuse-interface approach the Stokes
equation includes interfacial tension, we now also need the local balance equations
for c, u and s (in this section we will omit the superscript (3) for three-dimensional
systems). Hence, the set of governing equations now is

∇ · v = 0, (3.1)

ρ
dc

dt
= −∇ · j , (3.2)

∇ · τ = 0, (3.3)

ρ
du

dt
= τ :∇v − ∇ · q, (3.4)

ρ
ds

dt
= −∇ · j s + σ, (3.5)
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where d/dt = ∂/∂t+ v · ∇, j is the diffusion flux, q is the energy flux, j s is the entropy
flux and σ is the entropy production. The second law of thermodynamics states that
we must have σ > 0, where the equal sign applies for systems in equilibrium or
reversible changes. In the diffuse-interface approach the stress tensor τ also includes
interfacial tension and is, therefore, no longer defined by the classical relation given
in § 2. One expects an additional reversible part, depending on ∇c, which includes
interfacial tension as a body force. In a similar way, the diffusion flux j and the
energy flux q also depend on ∇c.

To find relations for j , τ and q, we follow the principles of classical irreversible
thermodynamics (de Groot & Mazur 1984): the fluxes are assumed to be linear
functions of the thermodynamic forces appearing in the entropy production σ. A
more explicit expression for σ can be found by considering the Gibbs relation, which
is given by the total differential of u. Assuming local equilibrium for a volume element
moving with the flow (de Groot & Mazur 1984), the Gibbs relation is

du

dt
=
∂u

∂s

∣∣∣∣
c,∇c

ds

dt
+
∂u

∂c

∣∣∣∣
s,∇c

dc

dt
+

∂u

∂∇c
∣∣∣∣
s,c

· d∇c
dt

. (3.6)

In what follows we omit the subscripts denoting the variables which are kept constant.
The local balance equation for ∇c can be found by considering the gradient of equation
(3.2). After some manipulations we find

d∇c
dt

= −∇v · ∇c− ∇
(

1

ρ
∇ · j

)
. (3.7)

Combining equations (3.2) to (3.7) we obtain the following relation for the entropy
production:

σ =
1

T
(τ − τ̃ ):∇d v + (q − q̃)∇ 1

T
− j · ∇ µ

T
, (3.8)

where ∇d v is the deviatoric part of ∇v and

τ̃ = −ρ ∂u
∂∇c∇c, (3.9)

q̃ = ρ
∂u

∂∇c∇ · j , (3.10)

µ =
∂u

∂c
− ∇ · ∂u

∂∇c (3.11)

are the reversible part of the stress tensor, the energy flux due to mass diffusion and
the generalized chemical potential, respectively. The entropy production has a simple
structure: it is the sum of the products of the thermodynamic fluxes and forces. In
equilibrium both fluxes and forces vanish. Consequently, the equilibrium parts of the
diffusion and the energy flux are equal to zero and the reversible part of the stress
tensor can be written as τr = −pI + τ̃ , where p is an arbitrary pressure field.

The dissipative parts of fluxes, the viscous stress tensor τv = τ − τr , the energy flux
q and the diffusion flux j , are assumed to be linear functions of the thermodynamic
forces. Keeping in mind that fluxes and forces of different tensorial character do not
couple, we obtain

τv =
Λv

2T
(∇v + ∇vT), (3.12)



158 M. Verschueren, F. N. van de Vosse and H. E. H Meijer

q = −Λqq∇ 1

T
− Λqj∇ µ

T
, (3.13)

j = −Λjq∇ 1

T
− Λjj∇ µ

T
, (3.14)

where we have assumed that the viscous stress tensor is symmetric. The Λ are
the phenomenological coefficients. The coefficient Λv/2T can be identified as the
shear viscosity η, Λqq/T

2 is the heat conductivity and Λjj is the mobility parameter.
Equations (3.13) and (3.14) also include the cross-effects, the Soret and the Dufour
effect (Bird, Stewart & Lightfoot 1960), which will be neglected in what follows.

In this paper we are only concerned with small linear temperature gradients which
do not change in time. In this case the governing equations are given by

∇ · v = 0, (3.15)

ρ
dc

dt
=
Λjj

To
∇2µ, (3.16)

∇ · (τr + τv) = 0, (3.17)

where we have assumed that Λjj is constant. To complete this set of equations we
need an equation of state for the inhomogeneous system. Using a Taylor expansion
about the homogeneous system, Cahn & Hilliard (1958) derived the following form
for the specific Helmholtz free energy:

f(T , c,∇c) = fh(T , c) + 1
2
ε|∇c|2, (3.18)

where ε is the gradient energy parameter, which is assumed to be constant. Using an
additional Taylor expansion of fh about the critical temperature Tc and the critical
composition cc yields the Ginzburg–Landau form (Gunton, Miguel & Sahni 1983)

f(T , c̃,∇c̃) = 1
4
βc̃4 − 1

2
α(Tc − T )c̃2 + 1

2
ε|∇c̃|2, (3.19)

where c̃ = c − cc. The parameters α and β are both positive constants. Using the
thermodynamic relations ∂u/∂c|s,∇c = ∂f/∂c|T ,∇c and ∂u/∂∇c|s,c = ∂f/∂∇c|T ,c the
chemical potential (3.11) can be written as

µ = βc3 − α(Tc − T )c− ε∇2c, (3.20)

where we have omitted the tilde notation. At equilibrium µ equals zero. Besides the
spatially uniform (bulk) solutions c = ±cB , with cB =

√
α(Tc − T )/β, there is another

possible solution, which represents the interface profile. For a planar interface, with
z the direction normal to the interface, this solution is given by

c = cB tanh
z√
2ξ

with ξ =

√
ε

α(Tc − T )
, (3.21)

where ξ is the interfacial thickness.
Interfacial tension γ is determined by the choice of the equation of state. It can be

defined as the excess tangential stress:

γ =

∫ ∞
−∞
n̂ · (τr · n̂− τr · t̂ )dz = ρε

∫ ∞
−∞

(dc/dz)2dz. (3.22)

Using equation (3.21) we obtain

γ =
2
√

2

3

ρ
√
ε

β
[α(Tc − T )]3/2. (3.23)
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In the momentum equation interfacial tension is included in ∇ · τr . For small temper-
ature gradients ∇ · τr can be rewritten as ∇ · τr = −∇ρg + ρµ∇c, where g = f + p/ρ is
the specific Gibbs free energy. The momentum equation can then be written as (from
now the equations are two-dimensional)

∇g = ν(∇2v − k2v) + µ∇c, (3.24)

where we used the Stokes–Darcy approximation for the viscous part. Computationally,
it is convenient to rewrite the momentum equation in terms of the stream function
ψ, which is defined by v = (∂ψ/∂y, −∂ψ/∂x). In this way mass conservation is
automatically satisfied. The equation for ψ is found by taking the curl of equation
(3.24). This yields

ν∇2(∇2ψ − k2ψ) = ∇×µ∇c, (3.25)

where ∇× denotes the curl.
To scale the governing equations we use the following dimensionless variables:

c∗ = c/cBo, r
∗ = r/L, v∗ = v/V , µ∗ = µξ2

o/(εcBo), t
∗ = tV/L, T ∗ = T/To and ψ∗ =

ψ/(LV ), where ξo = ξ(To) and cBo = cB(To). Omitting the asterisk notation we obtain
the following dimensionless governing equations:

dc

dt
=

1

Pe
∇2µ with µ = c3 − (1− ζêT · r)c− C2∇2c, (3.26)

∇2(∇2ψ − k2ψ) =
1

Ca

1

C
∇×µ∇c, (3.27)

where the Péclet number Pe, the temperature parameter ζ, the capillary number Ca
and the dimensionless interfacial thickness C , called Cahn number in the rest of this
paper, are given by

Pe =
ρToξ

2
oLV

Λjjε
, ζ =

AL

Tc − To , Ca =
ξoνV

εc2
Bo

and C =
ξo

L
, (3.28)

respectively. In the classical approach the set of dimensionless parameters looks
different: Pe and C are absent and the capillary number is defined as Cacl = ηV/γo.

Using equation (3.23) the capillary number can be rewritten as Ca = 2
3

√
2 ηV/γo,

where γo = γ(To). This shows that Ca/Cacl = 2
3

√
2.

Analytical solutions can only be obtained in some special cases. In general a
numerical implementation is needed.

4. Computational methods
To discretize the governing equations we use a spectral element method (Timmer-

mans, van de Vosse & Minev 1994). The basis functions φ, which are used for the
spatial discretization, are high-order Lagrange interpolation polynomials through the
Gauss–Lobatto integration points defined per element.

The momentum equation (3.24) is a fourth-order differential equation in ψ. Since
the basis functions φ are elements of H1, that is H1(Ω) = {φ |φ ∈ L2(Ω),∇φ ∈ L2(Ω)×
L2(Ω)}, we split the momentum equation into two second-order differential equations

∇2Q = h, (4.1)

∇2ψ − k2ψ = Q, (4.2)

where h = Ca−1C−1∇ × µ∇c. The boundary conditions for Q and ψ are either
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homogeneous Neumann or Dirichlet. The Galerkin weighted-residual representation
of the differential equations is

(∇2Q,w)Ω = (h, w)Ω, (4.3)

(∇2ψ, w)Ω − k2(ψ, w)Ω = (Q,w)Ω, (4.4)

where the inner product (a, w)Ω =
∫
Ω
awd2r and w is the standard Galerkin test

function. Partial integration of the integrals on the left-hand side yields the weak or
variational form

−(∇Q,∇w)Ω = (h, w)Ω, (4.5)

−(∇ψ,∇w)Ω − k2(ψ, w)Ω = (Q,w)Ω, (4.6)

where the boundary integrals vanish because of the homogeneous boundary con-
ditions. The next step is to decompose the total domain Ω in Nel non-overlapping
sub-domains Ωe and apply the spectral discretization on each element:

Qe =

N∑
l,m=1

Qelmφ̃
e
lm, (4.7)

where φ̃lm is the two-dimensional Lagrange interpolation function through the
Legendre–Gauss–Lobatto integration points (l, m = 1 . . . N), which is the tensor
product of the one-dimensional interpolation functions: φ̃lm = φlφm. Using similar
discretizations for ψ, w and f and assembling the elements we obtain the following
discrete set of equations:

SQ = Mh, (4.8)

Sψ − k2Mψ = MQ, (4.9)

where S is the diffusion matrix, M is the mass matrix and Q, h and ψ are the discrete
vector representations of Q, h and ψ, respectively. The results presented in §§ 5 and
6 were all obtained using a fixed mesh with seventh-order quadrilateral spectral
elements.

The composition equation and the equation for the chemical potential are also a
set of two second-order differential equations, which we will solve in a coupled way.
Besides spatial discretization we now also need temporal discretization. Using the
Euler implicit method for time discretization and the same spatial discretization as
for the momentum equation we obtain M − ∆tNn

∆t

Pe
S

[1− ζêT ·r − (cn+1
i )

2
]M − C2S M

[ cn+1
i+1

µn+1
i+1

]
=

 Mcn0
0

 , (4.10)

whereM is the mass matrix, N is the convection matrix with v = (∂ψ/∂y,−∂ψ/∂x) and
S is the diffusion matrix. Superscript n denotes time t and n+ 1 denotes t+∆t. A Picard
iteration is used to deal with the nonlinear term (subscript i = 1 . . . I): the iteration
starts using cn+1

I = cn0 and as a stopping criterion we use max |cn+1
I+1 − cn+1

1 | < 10−4.

After convergence, µn+1
I+1 and cn+1

I+1 are used to compute a new h and we can move to
the next time step.



Thermocapillary instabilities 161

5. Classical vs. diffuse-interface results
In this section we compare our computational diffuse-interface results for thermo-

capillary flow with classical analytical results of Boos & Thess (1997) for fixed planar
and circular interfaces. We investigate how the results depend on the Cahn number
C .

To be able to make a direct comparison with the classical results we have to make
sure that we use the same assumptions and the same scaling. In their paper Boos &
Thess assumed that γ is a linear function of temperature. That is

γ = γo − B(T − To), (5.1)

where B is a positive constant. In our case, interfacial tension is given by equation
(3.23), which is nonlinear in T . However, for small values of ζ, defined in (3.28), we
can approximate γ as

γ =
2
√

2

3

ρε

ξo
c2
Bo(1− 3

2
ζêT · r∗). (5.2)

In this way we find

B =
dγ

dT
=

1

AL

dγ

dêT · r∗ =
√

2
ρε

ξo
c2
Bo

1

Tc − To . (5.3)

Boos & Thess used V = 1
2
ABL/η as the velocity scale. In our case this yields

Ca = 1
2

√
2 ζ. (5.4)

For small temperature gradients we can also approximate the composition profile c by
the equilibrium profile at T = To, that is c = co = c(To). With these approximations
the momentum equation is

∇2(∇2ψ − k2ψ) =

√
2

ζC
∇×µ∇co, (5.5)

with µ given by equation (3.26).
First we will consider a planar, fixed interface with a temperature gradient parallel

to it, as schematically depicted in figure 2(a). The direction of the temperature gradient
is indicated by the arrow. In the absence of a lateral length scale we have chosen
L = b and consequently k =

√
12. The temperature gradient induces an interfacial

tension gradient in the opposite direction, which causes stretching of the interface at
higher temperatures and shrinkage at lower temperature. This process also induces
a velocity in the surrounding fluid. Figure 2(b) shows the classical and the diffuse-
interface results for this thermocapillary flow. The diffuse-interface result for k =

√
12,

ζ =
√

2, and C = 0.1, 0.05, 0.01, 0.005 are shown. The corresponding classical result
is vx(y) = − exp(−√12y)/

√
12. The diffuse-interface results were obtained by solving

equation (5.5) with co = tanh((y + 1)/(
√

2C)). The inset in figure 2(b) shows the flow
near the interface in more detail. The results show a clear convergence to the classical
solution for C → 0.

The second case we consider is thermocapillary flow in and outside a circular droplet
with a fixed interface, as depicted in figure 3. The radius of the droplet is used as the
length scale. The temperature gradient again causes stretching at x = 1 and shrinkage
at x = −1. This will induce a flow in and outside the droplet with a streamline
pattern as shown in figure 4. The classical (a) and the diffuse-interface results (b)
for the streamline pattern are shown for k = 2

√
12 and k = 20

√
12, where we used
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Figure 2. (a) Planar interface, located at y = −1, with a temperature gradient parallel to it

and (b) the resulting thermocapillary flow: classical and diffuse-interface for k =
√

12, ζ =
√

2,
C = 0.1, 0.05, 0.01, 0.005.
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Figure 3. (a) Circular droplet with a temperature gradient in the x-direction and (b) the re-

sults for the thermocapillary flow: classical and diffuse-interface for k = 10
√

12, ζ =
√

2,
C = 0.1, 0.05, 0.01, 0.005, 0.001.

C = 0.01 and ζ =
√

2. The pattern inside the droplet matches the classical result.
The pattern outside the droplet differs from the classical result, because the classical
results were obtained on an infinite domain whereas we used a finite domain for the
diffuse-interface calculations. Therefore, the flow field far away from the droplet is
different, but the flow field in the vicinity of the droplet matches the classical result.
Figure 3(b) shows ψ inside the droplet for x = 0, 0 6 y 6 1, where we used k = 10

√
12.

The classical result and the diffuse-interface results for C = 0.1, 0.05, 0.01, 0.005, 0.001
are shown. Again, we find a clear convergence to the classical solution for C → 0.
There is a good match if C is smaller than the thermocapillary boundary layer
δ ∼ k−1.

In this section we have only considered fixed interfaces. If the contact lines of the
droplet were freely movable the droplet would migrate towards higher temperatures.
This process was investigated by Jasnow & Viñals (1996). In the next section we will
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k = 20√12k = 2√12

Figure 4. (a) Classical results and (b) diffuse-interface results for the flow field in and outside the

droplet for k = 2
√

12 and k = 20
√

12. In both cases C = 0.01 and ζ =
√

2 was used.
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Figure 5. A perturbed interface with a temperature gradient perpendicular to it.

consider a freely movable interface with a temperature gradient perpendicular to it
and we investigate how this affects the stability of the interface.

6. Thermocapillary instabilities
Consider an interface with a temperature gradient perpendicular to it as depicted

in figure 5. A small perturbation in the interface towards the high temperature side
now leads to local stretching of the interface. We shall see that this can lead to a
destabilizing Marangoni convection.

In the diffuse-interface approach interfacial tension is fixed by the choice of the
equation of state. Therefore, we can only vary the interfacial tension by varying
temperature. However, the dependence of interfacial tension on temperature can be
different for another choice of fluids. We now assume that the momentum equation
for other systems can still be written in the form of equation (5.5), but we replace ζ
by an independent parameter ζ̃. This way we can choose the ratio of the interfacial
tension gradients and interfacial tension independent of the temperature gradient.
Choosing ζ small compared to ζ̃ means that temperature effects relate exclusively
to interfacial tension. Assuming that ζ is small, we can now write the governing
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(b)

(a)

Figure 6. Time development (t = 0, 150, 250, 400, 500) of a perturbed interface with a temperature

gradient perpendicular to it for ζ̃ = 0.1 (a) and for ζ̃ = 10 (b). We used k = 10
√

12, Pe = 104 and
C = 0.01. The streamlines are also shown: for the solid lines the motion is clockwise and for the
dashed lines counterclockwise.

Figure 7. Time sequence (t = 0, 740, 800, 830, 850) of a randomly perturbed interface with a

temperature gradient perpendicular to it for ζ̃ = 20, k = 10
√

12, Pe = 104 and C = 0.01.

equations as

dc

dt
=

1

Pe
∇2µo, (6.1)

∇2(∇2ψ − k2ψ) =

√
2

ζ̃C
∇×(µo + ζ̃yc)∇c. (6.2)

One of the advantages of this choice of the governing equations is that we can use
simple homogeneous Neumann boundary conditions, that is ∂c/∂n = 0, to ensure
mass conservation.

Figure 6 shows the time development of an interface with an initial perturbation as
depicted in figure 5 for two values of ζ̃. For ζ̃ = 0.1 the interfacial tension gradients
are too weak compared to the interfacial tension itself and a stabilizing motion sets
in. For ζ̃ = 10 the interfacial tension gradients dominate and the perturbation grows.
For larger values of k the system would be unstable for smaller values of ζ̃, but the
thermocapillary boundary layer is more difficult to capture for large values of k since
we have to use C < k−1 to obtain the correct results.

The observed instability is different from Rayleigh–Bénard instabilities (Davis
1987), since we did not include heat convection due to fluid motion. Heat convection
would have a stabilizing effect on the instability shown in figure 6: the convection
cells would transport low temperature to regions of low tension and high temperature
to regions of high tension.

Finally, we show the time development of a planar interface with small random
perturbation (see figure 7). The resulting instability is similar to the one observed in
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figure 6. The interfacial deformation is so strong that a droplet pinches off. Strong
interfacial deformations as in figure 6 were also observed in other systems with low
interfacial tension and high interfacial tension gradients. For example, adding a small
amount of solvent to the binary system can induce large interfacial tension gradients
if the interfacial tension depends strongly on the solvent concentration. This situation
can lead to what Sternling & Scriven have called ‘interfacial turbulence’ (Sherwood
& Wel 1957; Sternling & Scriven 1959). Also some polymer–solvent–nonsolvent
systems, in which interfacial tension depends strongly on the solvent concentration,
show this kind of interfacial deformation, often referred to as macrovoid formation
(Berghmans 1995). A direct qualitative comparison between ‘interfacial turbulence’
and the instability observed in figure 6 is difficult because in the three-component
system there is convection of the solvent component, whereas in our case there is no
temperature convection. However, in both cases the instability is caused by the fact
that interfacial tension is small and interfacial tension gradients are large.

Figure 6 also shows that we can also handle topological changes in the interface.
However, the pinch-off also introduces another length scale, which is related to the
thickness of the drainage layer before pinch-off. This length scale is often smaller than
the size of thermocapillary boundary layer. Furthermore, as soon as the drainage layer
size becomes smaller than the distance b between the plates the Hele-Shaw formulation
of the problem breaks down and it becomes essentially a three-dimensional problem.
To get correct results for the pinch-off we have to choose C such that the diffuse inter-
face thickness is small compared to the size of the drainage layer. For too large values
of C the pinch-off time will be underestimated (Lowengrub & Truskinovsky 1998).

7. Conclusions
In this paper we have presented the diffuse-interface approach to thermocapil-

lary flow. A Galerkin-type spectral element discretization, based on Gauss–Lobatto
quadrature, was used for numerical implementation of the governing equations. The
high-order spectral interpolation is very suitable for an accurate capturing of small
interfacial thicknesses (Verschueren, van de Vosse & Meijer 1998).

The computational results were compared directly to analytical classical results.
The diffuse-interface result converges to the classical results for Cahn number C → 0.
The results shows that, to obtain a sufficiently accurate match with the sharp-interface
result, we do not have to use the physical value for the interfacial thickness. Sufficiently
accurate results were obtained when C is smaller than the thermocapillary boundary
layer δ ∼ k−1.

Finally, the effect of a temperature gradient perpendicular to an interface on the
stability of the interface was investigated. The interface is unstable for systems in
which forces due to interfacial tension gradients dominate interfacial tension forces.
The results are in qualitative agreement with the linear stability analysis presented
by Boos & Thess (1997). The results also show that the diffuse-interface model is
very suitable for modelling instabilities causing large interfacial deformations and
even topological changes. However, to obtain correct results in the case of droplet
pinch-off C has to be such that the diffuse interface thickness is sufficiently smaller
than the length scale typical for the drainage layer just before pinch-off. This length
scale is often much smaller than the size of the thermocapillary boundary layer.
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